Probabilities as propensities in quantum mechanics
DOI:
https://doi.org/10.35588/cc.v6d7880Keywords:
Probabilities, Propensities, Properties, Quantum mechanicsAbstract
The aim of this paper is to explore the problem of probabilities in quantum mechanics and how the concept of propensity has resurfaced in certain realist interpretations of this theory. Suárez (2007), Dorato and Esfeld (2010), and Lombardi and Castagnino (2008) have all defended the idea of considering probabilities as objective probabilities of the physical world, articulating them in terms of propensities. In this paper, we will seek to elucidate, firstly, what characterizes the positions that defend propensities as the most appropriate way to interpret probabilities in quantum mechanics; secondly, to specify the extent to which the various competing positions differ from one another; and finally, to defend the thesis put forward by both Lombardi and Castagnino (2008) and da Costa, Lombardi, and Lastiri (2013) that propensities are the best way to understand the role of probabilities in the quantum world. Within a property ontology such as that proposed by the Modal-Hamiltonian interpretation, propensities constitute second-order type-propensities that determine the tendency of said properties to be actualized in a preferred context of actualization.Downloads
References
Bub, J. (1977). Von neumann’s projection postulate as a probability conditionalization rule in quantum mechanics, Joumal of Philosophical Logic 6: 381-390. Doi: 10.1007/BF00262075
Bunge, M. (1981). Four concepts of probability, Applied Mathematical Modelling 5: 306-312. Doi: 10.1016/S0307-904X(81)80051-0
Busch, P. y Lahti, P. (2009). Lüders rule. En Greenberger, D., Hentschel, K. y Weinert, F. (eds.) Compendium of Quantum Physics, Springer Berlin Heidelberg, 356-358. Doi: 10.1007/978-3-540-70626-7
Da Costa, N. y Lombardi, O. (2014). Quantum mechanics: ontology without individuals, Foundations of Physics, 44: 1246-1257. Doi: 10.1007/s10701-014-9793-1
da Costa, N., Lombardi, O. & Lastiri, M. (2013) A modal ontology of properties for quantum mechanics. Synthese 190, 3671–3693. https://doi.org/10.1007/s11229-012-0218-4
Dieks, D. (2007). Probability in modal interpretations of quantum mechanics, Studies in History and Philosophy of Modern Physics, 19: 292-310. Doi: 10.1016/j.shpsb.2006.05.005
Dorato, M. (2007). Dispositions, Relational Properties and the Quantum World. En Kistler, M. y Gnassonou, B. (eds.). Dispositions and Causal Powers, Ashgate, 249-270.
Dorato, M. y Esfeld, M. (2010). GRW as an Ontology of Dispositions, Studies in History and Philosophy of Modern Physics, 41: 41-49. Doi: 10.1016/j.shpsb.2009.09.004
Gillies, D. (2000b). Philosophical Theories of Probability, London: Routledge.
Guerra Bobo, I. (2013). On Quantum Conditional Probability, Theoria 28 (1): 115-137. Doi: 10.1387/theoria.5682
Hájek, A. (2012). Interpretations of Probability. The Stanford Encyclopedia of Philosophy (Winter 2012 Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/win2012/entries/probability-interpret/
Heisenberg, W. (1958). Physics & Philosophy, Londres: Allen & Unwin.
Humphreys, P. (1985). Why Propensities Cannot be Probabilities, The Philosophical Review, Vol. 94, No. 4, 557-570. Doi: 10.2307/2185246
Lombardi, O. y Castagnino, M. (2008). A modal-Hamiltonian interpretation of quantum mechanics, Studies in History and Philosophy of Modern Physics, 39: 380-443. Doi: 10.1016/j.shpsb.2008.01.003
Lombardi, O. y Dieks, D. (2012). Modal interpretations of quantum mechanics, Stanford Encyclopedia of Philosophy, E. N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/spr2017/entries/qm-modal/>.
Lombardi, O. y Dieks, D. (2016). Particles in a quantum ontology of properties, en T. Bigaj y C. Wüthrich (eds.), Metaphysics in Contemporary Physics. Leiden: Brill-Rodopi, 123-143.
Doi: 10.1163/9789004310827_007
Lüders, G. (1951). Über die Zustandsänderung durch den Meßprozeß, Annalen der Physik 8, 322-328. Traducción al inglés de Kirkpatrick, K. A. (2006): “Concerning the state-change due to the measurement process”, Ann. Phys. (Leipzig) 15, 663-670. https://doi.org/10.1002/andp.200610207
Margeneau, H. (1954). Advantages and disadvantages of various interpretations of the quantum theory, Physics Today 7, 10: 6-13. https://www.jstor.org/stable/24533384
Mellor, D. H. (2005). Probability: a Philosophical Introduction, Londres: Routledge.
Peirce, Ch. S. (1910). Note on the Doctrine of Chances, en Philosophical Writings of Peirce, Nueva York: Dover.
Peirce, Ch. S. (1893). Reply to the Necessitarians, en Ch. Hartshorne y P. Weiss (eds.) Collected Papers of Charles Sanders Peirce, vol. VI: Scientific Metaphysics, 1935, Cambridge: Cambridge University Press.
Popper, K. (1982). Quantum Theory and the Schism in Physics, Vol. III de The Postscript, New Jersey: Rowman & Littlefield.
Popper, K. (1959). The propensity interpretation of probability, The British Journal for the Philosophy of Science, Vol. 10, No. 37: 25-42. https://www.jstor.org/stable/685773
Reichenbach, H. (1949). The Theory of Probability. Berkeley: University of California.
Salmon, W. (1979). Propensities: A Discussion Review, Erkenntnis, 14: 183-216. https://www.jstor.org/stable/20010662
Suárez, M. (2004). Quantum selections, propensities and the problem of measurement, The British Journal for the Philosophy of Science, 55: 219-255. Doi: 10.1093/bjps/55.2.219
Suárez, M. (2007). Quantum Propensities, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2): 418-438. Doi: 10.1016/j.shpsb.2006.12.003
Suárez, M. (2013). Propensities and Pragmatism, Journal of Philosophy 110 (2): 61-92. https://www.jstor.org/stable/43820751
van Fraassen, B. C. (1972). A formal approach to the philosophy of science, en R. Colodny (ed.), Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain. Pittsburgh: University of Pittsburgh Press, 303-366.
van Fraassen, B. C. (1974). The Einstein-Podolsky-Rosen paradox, Synthese, 29, 291-309. Doi: 10.1007/BF00484962
van Fraassen, B. (1991). Quantum Mechanics: An Empiricist View. Londres: Oxford University Press.
Venn, J. (1876). The Logic of Chance, 2a edición, London: Macmillan.
von Mises, R. (1957). Probability, Statistics and Truth. Londres: Allen & Unwin.
Downloads
Submitted
2025-12-26Published
Issue
Section
License
Copyright (c) 2025 Ignacio Rojas Herrera

This work is licensed under a Creative Commons Attribution 4.0 International License.








