ASPECTOS ESTRATÉGICOS EN LA CIENCIA DE LOS MATERIALES: DE LA MACROESTRUCTURA HACIA LA NANOESTRUCTURA

Dr. Yván Houbaert
Departamento de Ciencia de Materiales e Ingeniería
Universidad de Gante, Bélgica
Yvan.Houbaert@UGent.be

RESUMEN
Las jóvenes generaciones empiezan a darle la espalda a los estudios científicos y/o tecnológicos, sobre todo en lo que se refiere a la ciencia y tecnología de los materiales. Sin embargo, un nuevo estímulo en esta disciplina es necesario para enfrentar y solucionar los problemas del mundo tecnológico moderno, como son el deterioro de la atmósfera y el peligro de agotamiento de las materias primas. En la ingeniería de los materiales las propiedades de los materiales loman una posición clave y es de máxima importancia entender los diferentes tipos de comportamiento y los límites impuestos en las propiedades por la física de los materiales.

En la parte técnica del presente trabajo, se da una breve revisión de las diferentes técnicas de caracterización de micro estructuras y de los defectos estructurales observables con cada una de ellas. Empezando con la microscopía óptica se explica que los avances logrados en la ciencia de los materiales van de acuerdo con los avances logrados en las técnicas de caracterización. En cuanto a los aspectos estratégicos en el desarrollo de nuevos materiales y de nuevas tecnologías, se trata de demostrar que se requiere un grado creciente de colaboración científica entre universidades, instituciones y gobiernos, tanto a escala nacional como internacional, debido al alto costo de los equipos y alto grado de complejidad.

INTRODUCCIÓN
No es por casualidad que las grandes épocas en la historia del Hombre llevan los nombres de los materiales que fueron representativos para los desarrollos tecnológicos correspondientes. Los materiales siempre han sido el elemento clave de la tecnología y los avances logrados se deben al uso conciente de los materiales y a las modificaciones hechas por el hombre para modificar (es decir "mejorar") sus propiedades, o sea que la tecnología siempre gira alrededor de la ciencia y/o ingeniería de los materiales.

Desafortunadamente, en la actualidad las jóvenes generaciones parecen darle la espalda a los estudios científicos y/o tecnológicos y los números de estudiantes en las carreras de ingeniería (ciencias aplicadas) y de ciencias exactas no aumentan, sobre todo si se comparan con las inscripciones en carreras de economía y administración de empresas y en las carreras consideradas "soft". Por otro lado, dentro de las carreras de ingeniería, el estudio de la carrera de "ingeniero en materiales" (sobre todo a nivel de bachelor/master) experimenta una popularidad en constante declive. Una de las posibles causas de esta evolución nefasta es que para una gran parte de la población con una edad alrededor de los 18-20 años, momento en el cual deben decidirse en cuanto a su futuro profesional, existe una marcada falta de conocimiento referente a los esfuerzos emprendidos por investigadores y empresarios para la producción y el desarrollo de los materiales actuales y de los llamados "nuevos" materiales.

Es la tarea de los profesores e investigadores en las universidades e instituciones de educación superior empeñarse en la promoción del estudio de los materiales, motivando a los jóvenes egresados de las escuelas secundarias en este sentido y luchando a nivel científico-político con las autoridades locales e internacionales para lograr una avance firme en la ciencia e ingeniería de los materiales. Algunos aspectos estratégicos y científicos/didácticos posiblemente útiles para esta lucha se presentan en las siguientes líneas.

Consideraciones socio-eco-políticas
Es por eso que un tratado sobre aspectos estratégicos en el desarrollo de la ciencia e ingeniería de los materiales no puede ser completo sin una consideración de aspectos ecológicos. Es una evidencia que el impacto de la tecnología moderna sobre el medio ambiente es considerable y que representa una amenaza real para el futuro de la humanidad. Si bien es verdad que, aparte de consideraciones políticas, económicas o sociológicas, fuera del alcance del presente trabajo, son los avances científicos y tecnológicos los que pueden considerarse como el origen del desorbitante consumo de materia prima y de energía, también es verdad que el compromiso actual de la tecnología es de remediar, o por lo menos de frenar, estos excesos.

Ya desde hoy es visible que la mayor parte del esfuerzo científico y tecnológico debería de estar dedicado al desarrollo de nuevos materiales y de
nuevas técnicas, con el principal objetivo de reducir la presión sobre el medio ambiente. Uno de los grandes retos de la nueva tecnología y ciencia de los materiales es precisamente este desarrollo de procedimientos que aprovechen mejor los recursos de nuestro planeta. Una lista no exhaustiva contendría aspectos como: reciclaje, recubrimientos, materiales más resistentes, más duraderos, ...

Los cursos actuales en ciencia de los materiales deben abarcar conceptos como la huella ecológica de los materiales y de los procesos, la sostenibilidad, o sea el crecimiento sostenible. El profesor debería parafrasear la siguiente descripción: “Sostenibilidad requiere que el tamaño de la población sea menor o igual que la capacidad de carga del ecosistema para el estándar de vida deseado”.

Si consideramos la siguiente pregunta: “¿Qué es lo que amenaza el planeta?”, las respuestas pueden ser múltiples:

- Una catástrofe galáctica, como el percance del planeta con un asteroide grande, podría desestabilizar por completo nuestro mundo, cambiar el órbita de la tierra, destruyendo todo lo que conocemos en el planeta, pero no está al alcance del ser humano intervenir en un fenómeno de este tipo.

- La inevitable muerte del sol, pasando por las fases conocidas que experimentan todas las estrellas en el universo, finalmente destruirá nuestra planeta, pero solo después de un tiempo extremadamente largo, mientras que evitar esto tampoco está al alcance del ser humano.

- Una guerra nuclear absoluta y extrema, utilizando toda la fuerza atómica con la cual cuentan las naciones poderosas del mundo puede provocar hasta una fisura de la corteza del planeta, con un cambio completo de la atmósfera y la extinción de cualquier forma de vida en la tierra, pero es improbable que un acontecimiento de este tipo destruya el planeta enteramente.

Esto significa que tenemos la certidumbre que el planeta “Tierra” seguirá existiendo para muchos millones de años más, pero lo que no sabemos son las formas de vida que seguirán funcionando sobre la tierra y en los océanos y mares. Sobre todo el ser humano, llamado originalmente “homo sapiens”, parece no tener toda la sabiduría necesaria para poder sobrevivir. En la actualidad, ya no se suele hablar del “homo sapiens”, sino más bien del “homo fabrilis”, el hombre que trabaja, que fabrica herramienta, que produce y construye.

El “homo fabrilis” modifica sus alrededores, construye edificios, cambia el transcurso de los ríos, construye diques, consume energía, extrae las reservas del planeta y tiende a consumirlas sin pensar en las consecuencias implicadas. El “hombre fabrilis” tiende más a destruir que a construir, aunque por lo común inconscientemente. ¿Cuánto tiempo sobrevivirá el “homo sapiens/fabrilis” en nuestro planeta? Es una pregunta pertinente en este momento y tenemos la responsabilidad de utilizar nuestros conocimientos para remediar en todo lo que se ha ido destruyéndose hasta hoy. A veces nos preguntamos: ¿Hay otros seres parecidos a nosotros en el universo? Es muy poco probable que recibamos una respuesta muy pronto, mientras tanto el “homo sapiens” no está seguro de estar sólo en el universo.

El 2 de marzo de 1972 la sonda Pioneer X fue lanzada desde el Kennedy Space Center (Cabo Cañaveral, EE.UU.) con la misión de explorar los planetas Júpiter y Saturno del sistema solar y de luego seguir fuera de nuestro sistema planetario, rumbo a las demás estrellas de nuestra galáctica y sus posibles planetas. En esta sonda y en las siguientes del tipo Pioneer se ha montado una placa (figura 1) inscrita con un mensaje simbólico informando a una posible civilización extraterrestre, que pudiese interceptar las sondas, sobre el ser humano y su lugar de procedencia, la Tierra: una especie de “mensaje en una botella” interestelar. ¿Podemos servir de ejemplo para otras formas de vida o vamos a extinguirnos por nuestra propia falta de competencia? Es la gran tarea y el gran reto del ser humano de rescatar su planeta azul: la tecnología pone en peligro el planeta, pero la tecnología es la única forma de actuar y la ciencia y tecnología de materiales juegan un papel primordial en esta lucha.

![Figura 1: Placa montada en las sondas “Pioneer” e inscrita con un mensaje simbólico informando a una posible civilización extra terrestre sobre el ser humano y su procedencia.](image-url)
con una guerra religiosa (¿será más bien “de petróleo”?) entre la nación más prepotente del planeta y una religión que no es de su agrado, con un grave problema de contaminación ambiental y de sobrecalentamiento de la atmósfera, llevando entre otras cosas al deshielo de los polos y a una subida del nivel de los mares y océanos. Por ejemplo, en los Países Bajos, se estima que el nivel del mar para el año 2100 habrá subido ya con 0,65 hasta 1,30 m y para el año 2200 con 2 hasta 4 m [1]. Medidas preventivas para evitar la pérdida de enormes superficies en los Países Bajos son el incremento de la altura de los diques y el desplazamiento de la costa por un kilómetro hacia el mar. Esto involucrará un costo anual de 1.200 a 1.600 MÓ hasta 2050, representando un 0,5% de PNB de los Países Bajos.

Figura 2: Aspectos generales tratados en esta presentación

Posibles remedios ofrecidos por la tecnología
La finalidad del presente trabajo reúne diferentes aspectos: (1) desde el punto de vista de la enseñanza en materiales, proponer una estructura de cursos interrelacionados a través de una lógica basada en la investigación y en la relación entre la micro estructura y las propiedades estructurales, (2) desde el punto de vista de la investigación, demostrar que el estudio profundo de la micro y macro estructura (“desde micro hasta nano”) de los materiales forma la base para su desarrollo continuó, (3) desde el punto de vista de una estrategia general presentar algunas reflexiones para lograr apoyo financiero a través de sus propias instituciones (la universidad misma, su propio gobierno,...) y de los organismos nacionales (ministerio de educación publica, consejos científicos,...) e inter-nacionales.

Como se ha dicho, la tecnología ha dañado al planeta, la tecnología tiene que buscar las vías para remediar y proteger a la especie “homo sapiens/fabricus”. Dado la posición central de los materiales, avances en la ciencia e ingeniería de los materiales son de primera importancia. La figura 3 muestra esquemáticamente, en un marco más amplio, la ubicación del área de la “ingeniería de los Materiales”, abarcando elementos de la física y de la química, con un fuerte enlace hacia la ingeniería mecánica. La misma figura indica así mismo las relaciones entre las diferentes disciplinas científicas, dentro de la ciencia de los materiales. De allí la importancia de los cursos de ingeniería de materiales en un currículo de ingeniería mecánica.

![Figura 3: Posición de la Ingeniería de los Materiales en comparación con otras disciplinas](image)

Relación propiedades – micro estructura
En la ingeniería de los materiales las propiedades de los materiales toman una posición clave y es de máxima importancia entender los diferentes tipos de comportamientos y los límites impuestos en las propiedades por la física de los materiales. Se consideran todo tipo de propiedades, usualmente clasificadas en las categorías: mecánicas, químicas, físicas, económicas, ecológicas,... Puesto que la gran mayoría de las propiedades estructurales de cada una de las clases de los materiales depende de su microestructura, el estudio profundo de esta misma microestructura forma la base de la ingeniería de los materiales.

![Figura 4: Relaciones entre parámetros de producto, parámetros de proceso y propiedades de materiales, a través de la microestructura](image)
Como se muestra en la figura 4, la micro estructura de un material está determinada y controlada por parámetros de producción (como p.ej. la composición química) y por parámetros de proceso (como p.ej. los tratamientos termomecánicos). No tan solo es necesario el conocimiento de los aspectos micro estructurales de los materiales para poder entender su relación con los mecanismos responsables para las propiedades, sino que también se requiere el conocimiento de los mecanismos de transformación dentro de los materiales, llevando a micro estructuras características a través de diferentes tipos de procesamiento, como tratamientos termomecánicos. En esta área de investigación aparecen estudios de la termodinámica de las aleaciones y de las transformaciones de fase con difusión y sin difusión (transformaciones martensíticas). En base a estos conocimientos es posible diseñar nuevos materiales, nuevos procedimientos y desplazar los límites de posible utilización de ciertos materiales.

Caracterización de la micro estructura

La llamada "micro estructura" de un material se define muchas veces en los siguientes términos: descripción completa de los defectos estructurales del material, incluyendo su concentración, orientación, forma y distribución. La figura 5 da una representación esquemática de la micro estructura de un material, mostrando los principales defectos cristalinos en materiales metálicos políicos. La ciencia (tecnología) necesaria para obtener imágenes de la micro estructura se ha llamado "metalografía" cuando el énfasis estaba en los materiales metálicos, mientras que en la actualidad se suele hablar de "materialografía".

A continuación se exponen unos ejemplos de interrelación entre elementos de la micro estructura y el comportamiento de los materiales. Las propiedades mecánicas de los materiales son de primera importancia para el mundo moderno y dependen de la presencia de dislocaciones, cuyo movimiento está fuertemente influenciado por la presencia de otros defectos: átomos ajenos provocan endurecimiento por solución sólida, otras dislocaciones provocan endurecimiento por trabajo en frío, precipitados son la causa del endurecimiento por precipitación, etc… El tamaño del grano es muy importante para la capacidad de embutición (industria automovilística) y para las pérdidas magnéticas (industria eléctrica).

En estudios de transformaciones de fase, la difusión es el fenómeno fundamental para describir la cinética de la transformación. Sin embargo, la difusión en la masa del material ("bulk diffusion") depende de la concentración en lugares vacantes y la difusión es muy variable según el lugar en el cual ocurre: existe difusión acelerada por límites de grano, difusión acelerada por las dislocaciones, etc… Todos estos efectos tienen mucha importancia en la nucleación y el crecimiento de partículas de segunda fase y permiten controlar el grado de endurecimiento en aleaciones.

Finalmente, la descripción de la textura cristalográfica, representando la distribución de las orientaciones en un material policristalino, determina la capacidad para embutición del acero y las pérdidas magnéticas en aios eléctricos. La introducción de las técnicas de análisis microscópico de la textura por medio de EBSD (electrón back-scattered diffraction) o sea difracción de los electrones retro-difundidos, ha representado una
verdadera revolución en el estudio de los mecanismos de recristalización y de crecimiento de granos, por ejemplo a través de los trabajos de Kestens (UGent y TUDelft).

Las técnicas mencionadas en la figura 7 se utilizan únicamente para determinar defectos estructurales en la masa y no se consideran variaciones de la composición química de los materiales. Sin embargo, efectos químicos en la superficie o en el interior de los materiales son de suma importancia tecnológica. Por ejemplo, en muchos casos es posible ahorrar grandes cantidades apreciables de material valioso utilizando recubrimientos dedicados sobre un material de base con requerimientos más elementales y entonces de menor costo. En estos casos es muy importante investigar cambios de concentración, segregaciones, precipitaciones, etc. Para eso, se necesita una resolución química y una resolución espacial (lateral y en profundidad) suficiente.

La figura 8 muestra una vista general de técnicas de caracterización química en superficie y en profundidad, con alta resolución. Unos ejemplos de técnicas incluidas en la figura son: SIMS (secondary ion mass spectroscopy), XPS (photo-electron spectroscopy), EPMA (electron probe for micro analysis), AFM (atomic force microscopy), AES (Auger electron spectroscopy). Obviamente, también estos equipos son de muy alta gama y tienen precios considerables, de modo que sólo son accesibles para universidades estableciendo consorcios de investigación, como por ejemplo en la Universiteit Gent para el FIB-SEM (un microscopio electrónico de barrido (fuente de electrones FEG) y equipado con un focussed ion beam para efectuar cortes microscópicos en el material) y para el HR-TEM (microscopio electrónico de transmisión de alta resolución). Los consorcios establecidos para la adquisición de estos equipos com-

Figura 6: Dimensión de los defectos estructurales, elementos de la microestructura de los materiales

Figura 7: Algunas de las técnicas disponibles para observar ciertos defectos en los rangos de resolución correspondientes (SPM: microscopía de barrido con técnica de FIM y AP, TEM: microscopía electrónica de transmisión, SEM (microscopía electrónica de barrido), OM: microscopía óptica, NE: ojo desnudo).

Considerando el tamaño característico de cada uno de los defectos micro estructurales, las técnicas necesarias para observar las mismas habrán de ser elegidas en función de la resolución ofrecida por cada una de las técnicas (véase más adelante). La figura 6 muestra el rango de dimensiones de los defectos estructurales en orden de aumento y con dimensiones en nanómetros. Defectos y elementos estructurales con dimensiones en el rango del nanómetro pertenecen a la llamada “nanotecnología”. Cada uno de los defectos mencionados es un elemento de la microestructura y tiene una influencia sobre una o varias propiedades del material. Su identificación y estudio permiten entender y modelar el comportamiento de los materiales, pudiéndose llegar inclusive al diseño de nuevos materiales con propiedades predichas en base a las teorías.

La calidad de la investigación de un centro tecnológico en materiales dependerá en gran medida de la capacidad de medición de los defectos y de la resolución alcanzable. La figura 7 muestra algunas de las técnicas de caracterización de materiales que pueden ser utilizadas para visualizar al-
prehenden diferentes grupos de investigación en materiales perteneciendo a diferentes departamentos de diferentes facultades de la universidad. Control de la microestructura

Ya se explicó más arriba que la microestructura es determinante para el comportamiento de los materiales. En los laboratorios del Departamento de Ciencia de Materiales e Ingeniería de la Universidad de Gante existe una larga tradición en el campo de la investigación de los aceros en particular y de materiales ferrosos en general. Durante las últimas décadas todos los trabajos se han iniciado después de un estudio profundo de la literatura y de discusiones teóricas muy extensas, basadas en el conocimiento de la metalurgia física, la cual es una de las especialidades dentro de la ciencia de los materiales.

Figura 9: Diagrama esquemático con tratamientos termomecánicos, tipos de enfriamiento, deformación por laminación y paso a través de un diagrama CCT con diferentes velocidades de enfriamiento, llevando a micro estructuras complejas (según B.C. De Cooman)

Con fundamentos en un conocimiento profundo de las transformaciones de fase en los materiales en base al acero y disponiendo de información muy completa sobre diagramas de transformación, ha sido posible llevar a cabo trabajo científico de alto nivel y con mucho éxito, desarrollándose nuevos aceros, cada vez de mejor calidad, desplazando continuamente los límites previamente establecidos. Estos desarrollos son posibles gracias a la disponibilidad de equipo avanzado y de un know-how construido durante varios años de programas de enseñanza bien preparados, así como de una cantidad supercrítica de personal docente de alta calidad, con amplia experiencia industrial y/o en el extranjero. Estos son elementos estratégicos importantes para cualquier institución de enseñanza e investigación en materiales (ver también más adelante).

La figura 9 servirá de ejemplo para ilustrar la relación entre conocimientos teóricos, creatividad y un conocimiento suficientemente profundo de la metalurgia física de los aceros. En el diagrama CCT representado, se muestran en forma esquemática una serie de posibles tratamientos termomecánicos llevando a una serie de aceros con microestructura variada y una serie de propiedades determinadas por dicha microestructura. En la literatura se encontrarán numerosas publicaciones, también de nuestro departamento, reportando resultados de experimentos de esta índole. Mientras que hace a penas unas décadas la producción de acero era un arte, con tratamientos térmicos a temperaturas caracterizadas con conceptos como “color de ala de mosca”, en la actualidad todos los procesos son muy exactos y controlados, lo que se debe a la casualidad y se logran propiedades de las cuales sólo era posible soñar en aquel entonces.

El desarrollo de nuevos aceros (nuevos materiales) a partir de este tipo de diseño experimental lleva finalmente a un mejor aprovechamiento de los recursos del planeta: aumentando la resistencia mecánica de los aceros, el uso de espesores más bajos se posibilita, con una reducción en el consumo de materia prima y una reducción de peso del vehiculo, llevando a un ahorro de energía. Otros desarrollos ocurrieron en tratamientos superficiales para evitar la corrosión, optimización de la microestructura para absorber energía en caso de impacto, etc... Aquí, más que en otro lugar, se puede poner (con una ligera exageración): “the sky is the limit”.

Aspectos estratégicos

Nuestro planeta está en constante evolución y la tendencia hacia la globalización se hace sentir en todos los niveles de la sociedad. Las empresas se vuelven cada vez más multinacionales y cada vez más grandes. Esto dar aquí un ejemplo de la evolución durante las últimas décadas, con influencia sobre la estrategia de la investigación en materiales en Gante, Bélgica: uno de los socios industriales más importantes de nuestro departamento ha sido por muchos años “Sidmar”, una empresa siderúrgica, formando originalmente parte del grupo ARBED, luego del grupo Arcelor y finalmente fue integrada en el grupo ArcelorMittal (figura 10).

Figura 10: El señor Mittal (derecha) después de haber adquirido la empresa siderúrgica “Sidmar” en Gante, Bélgica (en el fondo, el centro de investigaciones OCAS)
Un fenómeno similar se presenta en el mundo científico: las entidades de investigación tienen que alcanzar una masa crítica cada vez más grande y las asociaciones y/o consorcios se forman de manera acelerada. De no hacerlo, cada grupo de investigadores corre el peligro de quedar aislado y de perder la oportunidad de participar en los grandes proyectos, elaborándose a nivel internacional y muchas veces hasta mundial. Esto representa un gran peligro para la calidad de la enseñanza y de la investigación en países con menos impacto económico, como p.ej. los países de América Latina.

Figura 11: Logo del consorcio HR-TEM de la UGent, con mención de los departamentos involucrados (diseño R. Van Hecke, DMSE, UGent)

Como se mencionó arriba, el costo de los equipos modernos para la caracterización de la microestructura de los materiales es enorme y ya no es posible para un departamento adquirirlos. Es sólo a través de la formación de consorcios, fomentados por las propias universidades, que es posible seguir en la punta de la investigación y de conseguir una infraestructura actualizada. Cabe mencionar aquí como ejemplo el consorcio HR-TEM de la Universiteit Gent (figura 11), con participación de nuestro departamento (para el aspecto de los materiales metálicos), en colaboración con varios grupos de investigación de la Facultad de Ciencias para los aspectos de nanotecnología en polímeros y cerámica.

La formación de consorcios dentro de las universidades es sólo uno de los pasos necesarios para lograr mayor fuerza de impacto. Asociaciones entre universidades y entre universidades y empresas son cada vez más importantes. Desde hace ya varios años existe un edificio "duplex" sobre el campus Zwinjaarde de la UGent, incorporando las actividades del Departamento de Ciencia de los Materiales e Ingeniería de la Universidad de Gante, con parte de las actividades de OCAS (centro de investigación de ArcelorMittal), del CRM (Centre for Research in Metallurgy) y el FLAMAC (Flanders Materials Centre). Esta convivencia fomenta la colaboración científica y asegura más éxito en la presentación de proyectos comunes.

Figura 12: Conjunto de edificios e instalaciones de la UGent, OCAS, CRM y FLAMAC en el Campus Zwiinaarde

Finalmente, desde el punto de vista de la enseñanza, también es importante el enfoque internacional y el intercambio de estudiantes en los programas de maestría y de doctorado. En muchos casos una estancia previa en centros de investigación en el extranjero es una condición "sine qua non" para obtener un puesto fijo en las universidades. Los intercambios de tipo Sócrates-Erasmus son cada vez más importantes y deben de ser apoyados por las universidades y sus departamentos.

Hemos tenido un promedio anual de unos 10 estudiantes Erasmus en nuestro departamento durante los últimos 15 años, una gran parte de ellos procedentes de universidades españolas. Ellos contribuyen a la investigación científica en programas cortos, pero muchos de ellos han quedado en el mismo departamento para llevar a cabo estudios de doctorado, antes de regresar a sus países correspondientes. Esto sólo es posible para un departamento que tenga suficiente fuerza de impacto y tutores disponibles para dirigir el trabajo de investigación (figura 13).

Figura 13: Interacción entre los estudiantes de doctorado y sus tutores (www.phdcomics.com)

Aspectos didácticos

Dentro de los programas de estudios para ingeniería de materiales se ofrecen diferentes cursos, algunos de contenido general (nivel "bachelor"), otros más especializados (nivel "master"). Es muy importante motivar a los estudiantes de nivel "bachelor" para que luego opten por un...
maestría en materiales. Existe en el programa de la UGent una serie de cursos elementales en materiales, enseñados en el programa "bachelor", en los cuales se tratan los temas generales, basándose en un libro de texto conocido y bien aceptado en varias instituciones del mundo: "Materials Science and Engineering: an introduction" de W.D. Callister Jr. (figura 14).

![Seventh Edition](image)

Figura 14: Portada del libro de texto utilizado en los primeros cursos “bachelor” en la Facultad de Ingeniería de la UGent

Este libro ha conocido una excelente aceptación dentro de nuestros programas y se utiliza como libro de texto oficial para la materia. El hecho que el libro está en su versión original en inglés no representa ningún inconveniente mayor, al contrario esto incita a los estudiantes a acostumbrarse a literatura en otros idiomas. Las clases se dan ex cátedra, con la ayuda de una serie de presentaciones en ppt con mucha ilustración y ejemplos de la vida diaria. Las presentaciones completas (24 tópicos diferentes, cada uno en una presentación ppt de entre 50 y 150 diáspicas) están a la disposición de los alumnos a través de una plataforma didáctica "Minerva". El examen es con libro abierto y enfocado hacia la aplicación de los conocimientos obtenidos durante el curso.

Además de las clases teóricas, se inició a partir del presente curso académico con la implantación de unas sesiones prácticas, para todos los alumnos a nivel "bachelor", en las cuales aprenden a utilizar el paquete de selección de materiales diseñado por M. Ashby de la Universidad de Cambridge (figura 15). Para esto, se adquirió una licencia oficial y se instaló el programa sobre un servidor de la facultad. Los alumnos se reparten entre las diferentes salas de computación de la facultad, con asistencia de colaboradores de nuestro departamento, para estudiar y resolver problemas de selección de materiales. Sin lugar a dudas, un modo de obrar como mencionado arriba debe de motivar a los jóvenes estudiantes de ingeniería y llevar a un aumento en el interés en este tipo de carrera y a un incremento en número de estudiantes.

![Image](image)

Figura 15: Selección de materiales con la ayuda del paquete Cambridge Engineering Selector (CES) de M. Ashby

Conclusiones

El reto del siglo XXI es de salvaguardar la viabilidad de nuestro planeta para el ser humano. Con este fin es absolutamente necesario un desarrollo tecnológico sostenible, con respecto para el medio ambiente y respecto para las reservas energéticas y de materia prima del planeta. Dentro de todas las áreas de tecnología, la ciencia de los materiales juega un papel sobresaliente. En estos momentos es preciso invertir suficiente energía en este tipo de actividades, por un lado con el fin de formar a un número siempre incrementando de ingenieros especializados en materiales, con buenos fundamentos físicos y químicos, y, por otro lado, invertir en laboratorios suficientemente grandes y bien equipados.

En cuanto a equipo para estos laboratorios, se trata en primera instancia de aparatos para observar y cuantificar la micro estructura, con el fin de describir completamente los defectos estructurales del material, incluyendo su concentración, orientación, forma y distribución. Bajo la escala de los defectos más pequeños, se entra en el mundo de la nanotecnología, con materiales nuevos y presentando propiedades novedosas. Dado el precio muy elevado de los equipos de alta resolución, es sólo posible llevar a cabo investigación de este tipo organizándose en consorcios dentro de una institución o colaborando entre diferentes instituciones.

Para entender el comportamiento de los materiales es necesario conocer las relaciones entre propiedades y microestructura y saber cómo modificarla. El tiempo de los sabios encerrados en sus torres de marfil
ha terminado ya desde hace muchos años. Ahora el avance está en la colaboración entre instituciones, industrias y países.

Para terminar, queremos citar las palabras del profesor Tony De Ardo, pronunciadas en la ocasión de la 17ma Conferencia de Laminación, organizada en Rosario, Argentina, del 10 al 13 de Noviembre de 2008: “El acero no es un material muy tradicional... continúa rompiendo paradigmas metalúrgicos y revolucionando procesos y productos”. Los “nuevos materiales” incluyen también los desarrollos actuales de los materiales llamados “tradicionales”, pero sólo pueden llevarse a cabo si uno dispone de alta tecnología y de ingenieros en materiales bien preparados.

REFERENCIAS
1. Periódico “De Standaard”, Bélgica, 4 de septiembre de 2008

CONTACTO
yvan.houbaert@ugent.be