SISTEMA AUTOMÁTICO DE CONTROL DE CALIDAD
PARA FABRICACIÓN DE ELECTRODOMÉSTICOS*

Manuel Vega P., *Gustavo Meyer D. y ****Gonzalo Chauriye A.

RESUMEN.

En este trabajo, se presenta un sistema que permite realizar, en forma automática, pruebas de control de calidad a productos electrodomésticos en la misma línea de producción. Las principales características que mide el equipo son la aislación eléctrica, la potencia, el factor de potencia y la corriente consumida a tensión nominal. El sistema diseñado y construido con tecnología digital, controla la secuencia de pruebas necesarias para realizar con seguridad la medición de las características anteriormente señaladas. Terminado este proceso, genera desde una impresora, un informe en el cual junto al N° de serie del producto, se certifica los resultados de las pruebas realizadas, de acuerdo a las normas oficiales para artículos electrodomésticos. La intervención del operario encargado de la línea se reduce solamente a conectar el producto al sistema y presionar el botón que da inicio a las pruebas.

ABSTRACT.

In this work, a system to make automatically, tests of quality control to electrical articles at the line of fabrication, is presented. The main characteristics to be measured are electrical isolation, power, power factor and the current consumed at nominal voltage. The system was designed and built with digital technology and it controls the sequence of necessary tests to make in a safe way, the measurement of those characteristics. Once this process is finished, a report from a printer is provided. This report contains the serial number of the product and the values measured in the test according to the standards of these articles. The operator must only connect the article to the system and to press the button to start the tests.

* Conferencia Latinoamericana del Instituto de Ingenieros en Electricidad y Electrónica (IEEE)
LATINCON'90, México.
** Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de Santiago de Chile.
*** Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de Santiago de Chile.
**** Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de Santiago de Chile.
INTRODUCCIÓN.

Chile ha realizado un esfuerzo importante en los últimos años, tendiente a diversificar e incrementar sus exportaciones. Hoy día, los sectores minero, forestal, pesquero y agrícola exhiben un importante grado de desarrollo. El sector industrial también ha experimentado crecimiento, pero sin embargo, el volumen y el valor que alcanza la exportación de estos productos no es todavía de gran significación dentro del total de las exportaciones nacionales.

La aceptación de los productos industriales, así como la de todos los productos en general, depende entre otros factores del precio y de la calidad. El control de calidad, en la fabricación nacional de productos industriales tiene un desarrollo incipiente. En algunas empresas, se usa instrumentación analógica con gran dependencia de un operador lo cual se traduce en un proceso lento y expuesto a errores.

El sistema que se presenta en este trabajo, está orientado a mejorar el control de calidad de un segmento del sector industrial, el segmento de los artículos electrodomésticos. El control digital de estos procesos presenta muchas ventajas que inciden en la eficiencia del proceso de fabricación. Entre estas ventajas, se pueden mencionar los siguientes:

a) Mayor precisión en el control de calidad al eliminar los errores que se producen en los sistemas basados en un operador.

b) Eliminación de los riesgos a que se expone el operador por trabajar con equipos energizados.

c) Costos de desarrollo de ingeniería muy inferiores a los costos de desarrollo de los equipos importados, por tratarse de un sistema desarrollado en el país.

d) Aumento del número de productos controlados por hora.

d) Mayor confiabilidad debido a que en las pruebas y en la impresión del certificado de control de calidad no interviene el operador.

ESTRUCTURA DEL SISTEMA.

El sistema está constituido por tres módulos tal como se muestra en la figura 1. El primero de ellos, está dedicado a la adquisición de datos y utiliza sensores de corriente y voltaje para la determinación de la resistencia interna, la corriente, la potencia, el factor de potencia y la corriente de fuga. El segundo módulo es el principal y su función es el procesamiento de los datos y el control de todas las operaciones del sistema. Su diseño se basó en un microprocesador Z-80 y posee un conjunto de interfaces, memoria RAM y memoria EPROM en la cual se grabaron los programas que manejan el sistema. El tercer módulo es el de Entrada/Salida. Contiene dispositivos periféricos tales como un teclado y un display alfanumérico para el ingreso y visualización de los parámetros del sistema, una impresora mediante la cual se imprimen los certificados adhesivos con los resultados de las mediciones, una botonera para ordenar el inicio de las pruebas, relés para controlar la aplicación de la energía al aparato, un conector RS-232-C para transferencia opcional de datos a otro computador para objeto de control estadístico, etc.
Fig 1 Estructura general del sistema

MODULO DE ADQUISICION DE DATOS.

La figura 2 muestra un diagrama de los circuitos que constituyen este módulo. Los sensores de corriente y de voltaje permiten obtener muestras sinusoidales de tensión representativas de la corriente consumida por el aparato en prueba y de la tensión aplicada. Esto se logró mediante el uso de una resistencia shunt para la muestra de corriente y de un divisor de voltaje para la muestra de tensión.

Los amplificadores y los rectificadores de precisión permiten transformar en señales de corriente continua, las muestras sinusoidales obtenidas a través de los sensores. Se utilizó dos amplificadores operacionales de precisión para instrumentación y resistencias de precisión. El convertor análogo digital es el elemento final en la obtención de la amplitud de tensión y corriente. Permite digitalizar la información proveniente de los rectificadores de precisión. Se utilizó un convertor análogo digital ICL 7109 de 12 bits para obtener una adecuada resolución.

Las señales provenientes de los sensores son también enviadas a detectores de cruce por cero para transformarlas en ondas cuadradas. Estas a su vez son enviadas a un circuito detector de desfase el cual entrega un pulso cuya duración es proporcional al desfase entre el voltaje y la corriente.

El detector de desfase está construido en base de circuitería lógica sincronizada por programa.
MODULO DE PROCESAMIENTO DE DATOS.

La figura 3, muestra una diagrama del módulo de procesamiento de datos. Su diseño está basado en el microprocesador Z-80. Posee una memoria EPROM 2764 de 8 Kilobytes, en la cual se grabó los programas que manejan el sistema, una memoria RAM MS 6516 de 2 Kilobytes para almacenamiento temporal de información y un conjunto de interfaces. Estas interfaces son las siguientes: un timer 8253 para medir laduración del pulso de desfase, mediante la contabilización de pulsos de una frecuencia estable; una interfaz paralelo 8253 que comanda y adquiere la información binaria proveniente del conversor A/D; una interfaz 8279 para el manejo del teclado de ingreso de parámetros y manejo de un display de 7 segmentos, una interfaz paralelo, para el manejo de la impresora, una interfaz serie 8251 para comunicación opcional con un computador externo y una interfaz paralelo 8253 para el botón de partida, el manejo de relés que aplican energía al artículo en prueba.
Figura 3 Módulo de procesamiento de datos.

MODULO DE ENTRADA - SALIDA.

Los principales elementos que forman este módulo se muestran en la figura 4. Ellos son una impresora en la cual se imprimen en etiquetas autoadhesivas los resultados de las pruebas efectuadas a cada producto; un teclado para el ingreso de ciertos parámetros tales como el número de serie del primer artículo que se va a medir, los valores de voltaje, corriente y aislación nominales, etc. un display de 7 segmentos para verificar el ingreso de parámetros; un botón de partida, un conjunto de relés para controlar la aplicación de energía al producto; un conjunto de luces de indicación para el operario.

DISEÑO DE SOFTWARE.

Los programas que manejan y controlan la operación del equipo fueron desarrollados en lenguaje assembly Z-80. La figura 5 muestra el diagrama de flujo general. Una vez que se energiza el equipo, se llama a una rutina de inicio la cual entre otras tareas programa las distintas interfaces. Luego se llama a la rutina de ingreso y visualización de parámetros. El operador debe ingresar el número de serie del primer artículo, el voltaje, la corriente y la potencia sin carga. A continuación, el programa queda a la espera de que se ordene un reingreso de parámetros o que se presione el botón de partida. Cuando esto último ocurre, se activan los relés que permiten aplicar energía al aparato y se determina si hay cortocircuito o baja aislación a masa. Si la prueba anterior es satisfactoria se llama a la rutina de medición de corriente, voltaje y cálculo de potencia sin carga. En caso contrario, el programa salta a la rutina de impresión. Esta rutina imprime el número de serie del artículo en prueba, la fecha y hora, la resistencia interna, la corriente de fuga y el voltaje y la corriente y la potencia sin carga.
Finalmente, si se ha conectado al equipo un computador personal y si se ha completado el buffer de datos, reservado para este propósito, se envía dicha información a través de la interfaz RS-232C regresando luego el programa a la lectura de comandos. En caso contrario el programa vuelve directamente a la lectura de comandos.

![Diagrama de Módulo de Procesamiento de Datos](image)

Figura 4 Módulo de Entrada - Salida.

CONCLUSIONES.

Se ha presentado un sistema basado en un microprocesador Z-80 para realizar tareas de control de calidad en procesos de fabricación de artículos electrodomésticos. Su funcionamiento ha resultado satisfactorio en pruebas de laboratorio. Próximamente, se iniciarán las pruebas en una línea de producción de lavadoras. El error observado en los parámetros medidos es inferior al 1%.

El costo de componentes, sin incluir la impresora es de alrededor de US$300.

Para el diseño de los circuitos impresos, se utilizó el programa smartwork y para el diseño de software y grabación de las memorias EPROM, se utilizó el sistema de Desarrollo Lógico HP 64000.
Figura 5 Diagrama de flujo general.
BIBLIOGRAFÍA.

