Adaptive variation of Patagonian *Senecio patagonicus* Hook. & Arn., *Adesmia boroniioides* Hook.F. and *Lepidophyllum cupressiforme* (Lam.) Cass. as a plant response to environmental stress

[Variación adaptativa en respuesta al estrés ambiental de *Senecio patagonicus*, *Adesmia boroniioides* y *Lepidophyllum cupressiforme* que habitan en dos localidades de la Patagonia chilena]

Pablo Salvador GONZÁLEZ, Víctor FAJARDO & Pedro CUADRA

Laboratorio de Productos Naturales, Universidad de Magallanes, Punta Arenas, Chile.

Abstract

Different analyses were carried out on the following plant species: *Adesmia boroniioides* Hook.F., *Senecio patagonicus* Hook. & Arn. and *Lepidophyllum cupressiforme* (Lam.) Cass. in order to compare the photosynthetic pigment, carotenoid and phenylpropanoid contents. Total phenolic content and antioxidant capacity were measured by using common established reagents: Folin-Ciocalteau and ABTS respectively. Plant samples were collected from specimens growing inside the National Park Pali Aike and the Botanic Garden Carl Skottsberg in Punta Arenas city. The results showed no marked tendencies between photosynthetic pigments. Nevertheless, a good correlation was found among the antioxidant capacity and phenolic compounds. Furthermore, species growing in the Pali Aike National Park seem to be more adapted to the environmental conditions.

Keywords: Environmental stress, antioxidants, phenolic compounds, Patagonia.

Resumen

Se realizaron diferentes análisis al contenido de pigmentos fotosintéticos, carotenoides y fenilpropanoides. El contenido de fenoles totales y la capacidad antioxidante se midieron usando reactivos ampliamente conocidos: Folin-Ciocalteau y ABTS respectivamente en las siguientes especies: *Adesmia boroniioides*, *Senecio patagonicus* y *Lepidophyllum cupressiforme*. Estas plantas se encuentran en el Parque Nacional Pali Aike y en el Jardín Botánico Carl Skottsberg en la ciudad de Punta Arenas. Los resultados no muestran una tendencia clara entre las muestras de pigmentos fotosintéticos. Sin embargo, se pudo observar una buena correlación entre la capacidad antioxidante y el contenido de compuestos fenólicos. Además, aparentemente las especies que crecen en el Parque Nacional Pali Aike están más adaptadas a esos condiciones ambientales.

Palabras Clave: Estrés ambiental, antioxidantes, compuestos fenólicos, Patagonia.
INTRODUCTION
In the few last decades, the search for antioxidants in nature has received much attention from researchers in order to find natural sources, substances that can be formulated to give nutraceuticals to prevent oxidative damage in biological organisms. It is well-known that plants must respond to stressful conditions in order to survive. Generally, these adaptations involve changes in their metabolic processes. In many cases, these stress factors produce reactive oxygen species (ROS) that can be used by plants in their own metabolism. However, when they increase to elevated concentrations, significant damage to the plants may occur (Buchanan et al., 2002). Excess ROS in plants can lead to cumulative damage in proteins, lipids and DNA (Halliwell, 2006; Finkel and Holbrook, 2000). Hence the balance between antioxidation and oxidation is believed to be critical in order to maintain a healthy biological system. Plants expend metabolic energy and produce antioxidants that react with these ROS species generated in different metabolic pathways to reduce oxidative stress (Niciforovic et al., 2010).

The sites selected for this study are both part of Chilean Patagonia: the Pali Aike National Park (PANP), situated approximately 250 km to the west of the city of Punta Arenas, is a very unique place surrounded by volcanic structures and with highly degraded soil over an extension of 5000 ha. The last episodes of volcanic activity occurred almost 15000 years ago. In Pali Aike, strong winds blow persistently and rain precipitation is very low (200-250 mm per year). Its flora typically represents the Patagonian steppe in a semi-arid ecosystem (Dominguez et al., 2004; Skewes, 1978). The Botanic Garden Carl Skottsberg (CSBG) is located at The University of Magallanes. This site has significant precipitation with more than 400 mm rain each year and is associated with the transition to highland weather and a more stable near-ocean temperature (Santana and Butorovic, 2010). The concept of this garden as a representation of the plant diversity of the Magellan Region was conceived by botanist Edmundo Pisano in 1970. The three species considered in this study are representative shrubs of the flora of the Magellan Region. Senecio patagonicus and Lepidophyllum cupressiforme are quite resinous. An infusion of Adesmia boronioides is used by local natives for its medicinal properties in treating some illnesses.

In this research, we examined intra-specific variations in the antioxidant capacity of Senecio patagonicus, Adesmia boronioides and Lepidophyllum cupressiforme at these two climatically diverse sites.

MATERIALS AND METHODS

Plant material
Plant samples were collected in January and May 2011. Fresh leaves were kept in liquid nitrogen and transported to the laboratory for chemical analysis. Only leaves of the first floral stage that were exposed to full sunlight were used in this study.

Chlorophyll a, b and carotenoids
Leaves were chopped (1 cm²) and total chlorophylls and carotenoids were extracted with 5 ml of DMSO for 12 h at 65 °C in the dark as described in Hiscox and Israelattm (1979). The absorbance of the resulting samples (1 ml) was determined at 664, 648 and 470 nm. Photosynthetic pigment concentrations were calculated according to equations given in Chapelle et al., (1992).

Phenylpropanoids
Flavonoids and phenylpropanoids (e.g., vacuolar compounds) were extracted by grinding leaves with a pestle and mortar, using 2 mL of the mixture MeOH:H₂O:HCl=79:20:1 (v/v) as in Mirecki and Teramura (1984). Fresh MeOH was added to the homogenates and their absorbance read at 300 nm.

Total phenolic content (TPC)
In this analysis, the Alvarez et al., (2008) method was used. 50 μL of methanolic extract was added to 250 μL of Folin-Ciocalteau (undiluted). After 1 min, 750 μL of 20% (w/v) Na₂CO₃ solution was added and then made up to 5 mL with deionized water. After 2 h of incubation at room temperature, the absorbance was read at 760 nm. Methanolic solutions of gallic acid were used as standards. The phenolic concentrations were calculated using the regression equation indicated in Alvarez et al., (2008):

\[Y = 0.0019X - 0.0271 \]

Where:
Y = absorbance
X = phenolic concentration (GAE: mg of gallic acid/g of extract).
Antioxidant capacity
The free radical scavenging capacity was studied by using the ABTS [2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] radical cation discoloration assay (Dudonné et al., 2009), which is based on the reduction of ABTS++ radicals by antioxidants of plant extracts. ABTS was dissolved in deionized water to a 7 mM concentration. The radical cation (ABTS+•) was produced by reacting the ABTS solution with 2.45 mM potassium persulfate (final concentration) and allowing the mixture to stand in the dark at room temperature for 12-16 h before use. For the study the ABTS+• solution was diluted in deionized water to an absorbance of 0.7 (± 0.02) at 734 nm. A solvent blank reading was taken (A_B). After the addition of 100 μL of methanolic plant extract solutions to 3 mL of ABTS+• solution, the absorbance reading was taken at room temperature 10 min after initial mixing (A_E). The percentage of inhibition of ABTS+• was calculated using the following formula:

\[
\% \text{ Inhibition} = \left(\frac{A_B - A_E}{A_B} \right) \times 100
\]

Where:
- A_B = Blank absorbance
- A_E = Extract absorbance.

Statistical analysis
All results are expressed as means ± standard deviation and represent the mean of 3 replicates. T-Pearson correlation and t-test (2 variables) were used. The P value for all analysis was < 0.05 (Níciforovic et al., 2010, Siatka and Kasparová, 2010). The software used in statistical analysis and graphics were Statistica 7 and MiniTab 16.

Table N° 1
Variation of photosynthetic pigment contenta.

<table>
<thead>
<tr>
<th>Species</th>
<th>Chlorophyll a (μg/ml)</th>
<th>Chlorophyll b (μg/ml)</th>
<th>Carotenoids (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. boronoides</td>
<td>1 8.99 ± 0.84c</td>
<td>7.35 ± 0.92c</td>
<td>1.30 ± 0.08c</td>
</tr>
<tr>
<td></td>
<td>2 10.90 ± 0.85</td>
<td>9.28 ± 0.21</td>
<td>1.11 ± 0.13</td>
</tr>
<tr>
<td>S. patagonicus</td>
<td>1 10.51 ± 0.50c</td>
<td>11.11 ± 1.04b</td>
<td>0.99 ± 0.09b</td>
</tr>
<tr>
<td></td>
<td>2 8.03 ± 1.18</td>
<td>5.17 ± 0.35</td>
<td>1.67 ± 0.07</td>
</tr>
<tr>
<td>L. cupressiforme</td>
<td>1 7.88 ± 0.81b</td>
<td>12.53 ± 0.22c</td>
<td>0.54 ± 0.09c</td>
</tr>
<tr>
<td></td>
<td>2 10.56 ± 0.16</td>
<td>11.30 ± 0.59</td>
<td>1.16 ± 0.26</td>
</tr>
</tbody>
</table>

aMean concentration (μg pigment/ml extract; N = 3) and standard deviation of plants from different localities: (1): PANP, (2): CSBG.

bMeans are statistically different by T-test; P < 0.05.
cMeans are not statistically different by T-test; P > 0.05.

RESULTS
Chlorophyll a, b and carotenoids
The results of photosynthetic pigment analysis showed statistically significant differences between site samples in the chlorophyll b content of S. patagonicus and L. cupressiforme. In S. patagonicus the concentration of chlorophyll b (11.11 ± 1.04 μg/ml) from PANP is almost double that of samples from the CSGB (5.17 ± 0.35 μg/ml; Table 1). By contrast, the carotenoid content of both species were higher in samples from the CSGB than those from PANP. Likewise, samples of A. boronoides from the CSGB showed higher content of Chl a and Chl b than samples from the PANP.

Phenylpropanoids
The absorbance at 300 nm of A. boronoides was higher for plants from PANP (2.3 ± 0.12 AU) than samples from CSGB (1.36 ± 0.12 AU) (Table 2). Likewise, samples of S. patagonicus from the PANP showed a higher absorbance (2.46 ± 0.04 AU) than those from the CSGB (1.71 ± 0.16 AU). All differences were statistically significant. The third species (L. cupressiforme) did not show any difference in this analysis.
Table Nº 2
Variation of phenolics, antioxidant capacity and phenylpropanoids.

<table>
<thead>
<tr>
<th></th>
<th>Phenylpropanoids(^a)</th>
<th>ABTS(^a)</th>
<th>TPC(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. boronoides</td>
<td>1.2.30 ± 0.12(^b)</td>
<td>22.72 ± 0.95(^c)</td>
<td>54.53 ± 0.26(^c)</td>
</tr>
<tr>
<td></td>
<td>2 1.36 ± 0.12</td>
<td>20.20 ± 5.51</td>
<td>53.74 ± 0.91</td>
</tr>
<tr>
<td>S. patagonicus</td>
<td>1 2.46 ± 0.04</td>
<td>34.08 ± 4.56</td>
<td>75.18 ± 4.61</td>
</tr>
<tr>
<td></td>
<td>2 1.71 ± 0.16</td>
<td>4.01 ± 3.88</td>
<td>64.53 ± 2.89</td>
</tr>
<tr>
<td>L. cupressiforme</td>
<td>1 1.55 ± 0.04(^c)</td>
<td>30.48 ± 0.54(^b)</td>
<td>67.26 ± 0.64(^b)</td>
</tr>
<tr>
<td></td>
<td>2 1.63 ± 0.04</td>
<td>19.86 ± 1.74</td>
<td>59.53 ± 0.53</td>
</tr>
</tbody>
</table>

\(^a\) Mean concentration (phenylpropanoids = absorbance at 300 nm; ABTS = % of inhibition; TPC = mg GAE/g extract; N = 3) and standard deviation of plants from different localities: (1): PANP, (2): CSBG.
\(^b\) Means are statistically different by T-test; P < 0.05.
\(^c\) Means are not statistically different by T-test; P > 0.05.

Total phenolic content (TPC)
The Folin-Ciocalteau method indicates the total phenol content and gives a general picture of the molecular content of phenolics in samples. In this assay S. patagonicus and L. cupressiforme from PANP showed higher values than samples from the CSBG. Conversely, A. boronoides’ samples did not show any statistical differences.

Antioxidant capacity
According to the results of the ABTS assay (Table 2), the major antioxidant capacities were found in S. patagonicus (34.08 ± 4.56%) and in L. cupressiforme (30.48 ± 0.54%), both species from the PANP. The antioxidant capacity of S. patagonicus samples from PANP was almost 8 times higher than that of samples from the CSBG (4.01 ± 3.88%). A. boronoides’ samples did not show any differences between locations.

DISCUSSION
In this study, we analyzed intra-specific variations in the antioxidant capacity of different species from two climatically diverse sites. These results are shown in table 1 and 2. Table 1 shows the pigment content of plants from both locations. It can be seen that S. patagonicus samples from PANP have higher content of Chl b than plants from CSBG. Similar variations are observed in the Chl a content of A. boronoides and S. patagonicus. These pigments are located in the light harvesting complex and their function is to collect light and direct it to the photosystems. It seems that plants increase the amount of light harvesting pigments to dissipate the sun radiation from inner tissues thus avoiding irreparable damage to photosynthetically important membrane systems (Melis et al., 1992). These findings are suggesting that environmental conditions such as the amount and quality of sun radiation may alter the photosynthetic pigments content. However, other environmental conditions such as wind, rain, and air temperature may also be inducing physiological problems (Salisbury and Ross, 1992).

Because of the absorption of flavonoids and phenylpropanoids (λ = 270-310 nm) these compounds are likely to participate in the protection of the plant against UV-B radiation (Cuadra and Harborne, 1996). Previous analyses of flavonoids and associated phenolics in plants subjected to UV-B stress have either been carried out on total leaf content or else on the internal leaf constituents (Cuadra et al., 1997). In the present study on three Patagonian plants attention was focused on internal phenolics collected by grinding leaves in acidic aqueous methanol. Our results (Table 2) show that statistically significant differences occur in these internal components of A. boronoides and S. patagonicus. Apparently plants from much exposed environments (e.g. PANP) activate other mechanisms -different to those involved in the light harvesting complex- to deal with enhanced levels of UV-B radiation. These findings tally well with those reported in the literature showing that plants accumulate unidentified UV-B absorbing compounds after UV-B exposure (Alenius et al., 1995;
Cuadra et al., 1997; Xiong and Day, 2001). These results also agreed with Cooper and Bhattacharya (1998) who have suggested that hydroxycinnamic acids and their derivatives play an important role in plant defense against UV-B radiation.

On the other hand, ABTS differences may be explained as a consequence of the above environmental variables that produce ROS species in these much exposed plants. The ABTS assay is particularly interesting in plant extracts because the wavelength absorption at 734 nm eliminates color interferences (Li et al., 2008). The results of ABTS assay (Table 2) may suggest a relationship among phenolic compounds and free radical scavenging activity. This assumption is supported by statistical analysis of data. There is a good correlation among ABTS and TPC assays for all species: $r = 0.87$ for A. boronioiides, 0.95 for S. patagonicus and 0.99 for L. cupressiforme. Similarly, a good correlation is observed in S. patagonicus among the phenylpropanoid content (A_{300}) and TPC ($r = 0.92$). Previous phytochemical studies on S. patagonicus (Villarroel et al., 1991) and A. boronioiides (Galleguillos et al., 2008) have reported the presence of flavonoids which may sustain the above premise considering that phenolic compounds in plants may contribute significantly to their antioxidant potential. These findings are in agreement with previous reports on several medicinal plants (Wong et al., 2006). In this work, the antioxidant properties are directly linked to their structure. Because of the presence of an aromatic ring bearing one or two hydroxyl groups they are potentially able to quench free radicals by forming resonance-stabilized phenoxyl radicals (Rice-Evans et al., 1996; Bors and Michel, 2002). Similar results were found by Moura dos Santos et al., (2012) in Jatropha curcas L. They compared the physiological adaptations in response to different climates. After measuring gas exchange, photochemical and biochemical efficiency, photoinhibition was detected in plants subjected to severe water deficit. A reduction in quantum yield was also observed. As a response, J. curcas increased catalase activity, accumulated proline, sugars and aminoacids which may represent a protection mechanism for plants under drought conditions. Likewise, Oh et al., (2009) studied the responses of lettuce (Lactuca sativa L.) under water stress in order to examine the activation of genes involved in secondary metabolism and biosynthesis of antioxidants. They found a large increase in transcript level for PAL. After induced inhibition of PAL with 2-aminoindan-2-phosphoric acid, plants become more sensitive to chilling and heat shock treatments. They concluded that activation of the secondary metabolism as well as the antioxidant metabolism is an integral adaptation to these conditions. In another study, Muñoz et al., (2007), working on several aromatic plants, associated the free radical scavenging capacity with the chemical composition of plants with high levels of essential oils. All these findings are supporting our premise that correlates the antioxidant activity with secondary metabolites as a defense mechanism of plants to avoid damage to their structures.

In another context, Gutiérrez et al., (2012) analyzed the antioxidant activity of several Mexican plants used in traditional medicine. Their purpose was to correlate the anti-inflammatory activity with the antioxidant capacity of methanolic and alkaloidal extracts. The results of Folin-Ciocalteau, DPPH and ABTS assays showed that the methanolic extract has higher antioxidant activity than the alkaloidal extract. These results were attributed to a larger amount of phenolics (111 g GAE/g) contained in the extract. As in our study, phenolic compounds are also involved in the antioxidant properties of plants.

CONCLUSIONS
Adverse environmental conditions may generate diverse plant responses in order to avoid potential damage. One of these responses may be the production of antioxidant substances which can capture reactive and dangerous molecules. They may also increase the concentration of constitutive metabolites. Nevertheless, it seems that plants use a combination of different strategies in order to survive in hostile environments.

ACKNOWLEDGMENTS
We would like to thank CONAF (Pali Aike Administration Office) for giving permission to enter and collect samples inside the PANP, the Dirección de Investigación of the Universidad de Magallanes for financial support (PR-03CRN-11-12/027103) and Mrs. Stephanie Venables for her kind revision of this manuscript.

REFERENCES

Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas/370

